GNSS-R: NOT ONLY FOR OCEAN

Examples of water and land GNSS-R applications

Starlab's Space Technologies Team

Alejandro Egido

Contents

- Introduction
- Applications
 - Sea state monitoring
 - In-land water level monitoring
 - Sea level monitoring
 - Soil moisture and vegetation
- Conclusions

Introduction

The GNSS-R concept and Starlab's activities

The GNSS-R Concept

- Global Navigation Satellite System-Reflections
 - A bistatic (multistatic) radar technique to monitor a reflective surface
- A passive receiver picks up simultaneously direct and the reflected signals emitted by several GNSS satellites
- Sources are: GPS + Augmentation Systems + GIOVEs (now), and GALILEO (future) + GLONASS

- A continuous growing interest on GNSS-R
 - 1. Global availability and stability of GNSS signals
 - ▶ Use of GNSS signals as sources of opportunity
 - ▶ Passive nature of instruments (small, and cost effective)
 - 2.GNSS operation band (L-band): High interaction of L-band with natural medium
- •Numerous geophysical parameters to which GNSS signals are sensitive to: significant wave height, tide, lakes level, soil moisture, surface roughness,, vegetation, ...
- •This increasing interest leads to:
 - Development of scientific applications
 - Creation of new market niches

Starlab's GNSS-R Activities

Research Lines

- Sea state monitoring
- Altimetry applications for sea and in-land waters
- Soil Moisture and vegetation monitoring

GNSS-R Instrument development:

- Fully designed and developed at Starlab Barcelona
- Originally designed for water applications
- Modifications done for land applications:
- calibration chain to compensate for power mismatches among D and R
- RHCP and LHCP receiving antennas → polarimetric analysis

Oceanpal®

Applications

From Research to Operational Services

Application 1

Sea State Monitoring

- Interferometric Complex Field:
 - Ratio between Reflected, R(t), and Direct, D(t), Waveform peaks
 - Eliminates navigation message and propagation effects
- The algorithm:

Semi-empirical model (alpha accounts for on-site calibration parameters)

The Hague Campaign (SWH)

- Scheveningen Pier, the Hague, the Netherlands
- Operational campaign, providing quasi-real time for sea state information
- Long-term comparison of SWH measurements with microwave radar endorsed by Dutch National Water Agency
 - rms error < 15 cm, with SWH ranging from 0.5 to 3 m</p>

In-Land Waters Level Monitoring

- Phase Altimetry Algorithm:
 - Use of ICF phase to estimate height;
 - Cost function minimization and phase ambiguity method resolution to extract the height information equation:
- La Baells Campaign
 - Water reservoir in Berga, North of Catalonia, Spain (ACA)
 - Offline data delivery
 - Results comparison with in-situ sensor; pressure bubbler with sub-centimetric precision
 - After bias removal, the error standard deviation yields less than 2cm for 5 minutes observation time

Sea Level Monitoring

- Code Altimetry Algorithm
 - Rough surfaces destroy the coherency of the reflected signal
 - Determination of the height information out of the direct and reflected waveform lapse
 - Noisier observables than the phase of the ICF but suitable for sea altimetry applications
- Comparison with RADAC
 - Root mean square error of 12cm with 1 minute integration

Application 4

Soil Moisture Applications I

- Soil Moisture determination out of reflected and direct signal power
- •SAM ESA (ESTEC) project [from 2007 to 2008]
 - Los Monegros Experiment; Zaragoza (Spain).12th June 2008

Soil Moisture Applications II

- LEIMON ESA (ESTEC) project [from 2008 to 2010]
 - Investigation on combined effects of soil moisture, surface roughness, vegetation
 - Montespertoli Experiment, Florence, Italy (March 2009 Sept 2009)

LHCP / Direct

West East

Conclusions

Conclusions

- GNSS-R has become in the last decade a consolidated remote sensing technique
- The increasing interest in GNSS-R contributes to the development of new scientific applications and market niches.
- Starlab has developed several applications
 - Sea State Monitoring (Operational service, quasi-real time SWH data)
 - 15 cm demonstrated precision for wide range SWH
 - In-Land Waters Level Monitoring (towards operational service)
 - demonstrated < 2 cm precision
 - Sea Level Monitoring (towards operational service)
 - demonstrated < 15 cm precision
 - Soil Moisture & Vegetation (research)
- Such local based applications could be path opener to similar global range applications by GNSS-R payloads on-board satellites

Thank you for your attention