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Abstract. This paper presents a GIS-aided procedure for shallow landslide susceptibility mapping
at a regional scale. Most of the input data for the susceptibility assessment have been captured
automatically. A total of 13 parameters, related to the slope geometry, have been derived from the
digital elevation model (DEM) while vegetation cover and thickness of superficial formations have
been obtained from photointerpretation and field work. The susceptibility assessment is based on
multivariate statistical techniques (discriminant analysis), which has been tested in a pilot area in
La Pobla de Lillet (Eastern Pyreenes, Spain). The results obtained using a random sample show
that 82% of all the cells, and 90% of cells including slope failures, have been properly classified. A
susceptibility map based on the discriminant function has given consistent results. The susceptibility
assessment is very sensitive to the parameters selected. Compared to the traditional methods, the
main advantage of the GIS-aided procedure is the rapidity provided by the automatic capture of
parameters. It also has the capability of covering large areas, and the objectivity and reproducibility
of the results. The main drawback is that, at present, not all regions have DEM accurate enough to
cope with small landslides.
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1. Introduction

Landslide susceptibility is defined as the proneness of the terrain to produce slope
failures. Susceptibility is usually expressed in a cartographic way. A landslide sus-
ceptibility map depicts areas likely to have landslides in the future by correlating
some of the principal factors that contribute to landsliding with the past distribution
of slope failures (Brabb, 1984). These maps are a basic tool for land-use planning,
especially in mountain areas.

Several approaches have been traditionally used to assess landslide suscept-
ibility. Early attempts defined susceptibility classes by qualitative overlaying of
geological and morphological slope-attributes to landslide inventories (Nilsen et
al., 1979). More sophisticated assessments involved multivariate analysis (Jones
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et al., 1961; Neuland, 1976; Carrara, 1983). Development of Geographic Inform-
ation Systems (GIS) has enhanced the capabilities for susceptibility assessment of
large regions. The performance of neighbourhood operations with the GIS allows
extraction of morphometrical and hydrological parameters from Digital Elevation
Models (DEM), that otherwise would have been difficult to obtain. Parameters such
as slope gradient, slope aspect, slope convexity, watershed area, drainage network
order, among others can be easily included for susceptibility analyses. Complete
overviews of the use of GIS for landslide susceptibility assessment can be found in
Van Westen (1994) and Carrara et al. (1995).

We present here a methodology to assess shallow landslide susceptibility by
means of multivariate statistical techniques (discriminant analysis) used by Baeza
and Corominas, (2001). In this research, however, the procedure will be implemen-
ted in a GIS. The main goal was the automatic capture of most of the parameters in
relation to the occurrence of slope failures. The methodology has been tested in the
area of La Pobla de Lillet, Spanish Eastern Pyrenees that was hit in November 1982
by heavy rains that caused catastrophic floods and countless landslides (Gallart and
Clotet, 1988).

2. The Study Area

The lithology of the La Pobla de Lillet area is composed of sandstones, limestones,
marls and flysch formations from Devonic to middle Eocene ages. These forma-
tions belong to thrust sequences arranged in east-west bands, dipping towards the
north (Muiioz et al., 1986).

The spatial distribution of the landslides in the area is controlled by the lithology
and by both morphological and hydrological characteristics of the slopes. The most
affected lithostratigraphic units are clayey and sandy formations of Cretaceous-
Palaeocene age, which produce both translational and rotational slides and marls
of Lower Eocene age, also affected by translational failures. However, most of the
slope failures take place on colluvial deposits though some of them also affect
underlying weathered clayey formations.

The slope failures considered in this study belong to different landslide types.
Following Cruden and Varnes (1996) terminology, movements are mostly transla-
tional slides (debris slides, earth block slides) and debris flows. Mobilised volumes
are small (less than 10,000 m?), failure surfaces are usually located at a depth up
to 2 metres, and have an average length of 70 metres. All the movements show a
D /L (maximum depth/length of the scar) ratio of less than 0.1. The failures occur
preferentially on slope between 20° and 40°.

Rock falls and large landslides have not been included in the analysis presented
here because these movements take place under geological, geomorphological, and
hydrological conditions different to shallow landslides.
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3. Landslide Susceptibility Assessment

We selected shallow landslides due to their simplicity and because of previous
knowledge of the conditioning factors (Baeza, 1994). The term shallow landslides
is used here in a generic way and includes both small size translational slides and
debris flows. As has been already mentioned, in La Pobla de Lillet area the oc-
currence of landslides is controlled by the lithology. Bedrock is almost unaffected
whereas slope failures take place mostly on colluvium blanketed slopes and less
frequently on weathered marls and flysch formations.

The overall analysis is based on the hypothesis that failures occur due to the
increase of pore water pressures in the soil that reduces the soil strength, which
can be eventually overcome by slope driving forces. Slope geometry (slope angle,
watershed size, degree of concavity), lithology and land-use are expected to affect
the amount of rainfall that infiltrates into the soil and the groundwater flow path.

The landslide susceptibility assessment has been carried out in a test area by
means of multivariate analysis. The slope failures are considered the result of the
interplay of several factors that can vary in space and time. Multivariate analysis
is performed to evaluate the relative weight of each factor contributing to the in-
stability using a random sample of cells in the study area. As a result, a discriminant
function is obtained. Each cell of the random sample will take a value of the func-
tion according to the characteristics of factors present in it. Ideally, cells associated
with slope failures will have values of the discriminant function well apart from
cells associated with unfailed slopes. After checking the validity of the results, the
function is then applied to the whole study area. It is assumed that factors that cause
slope failure are the same in both the random sample and the whole study area.

In order to proceed to the susceptibility assessment, first of all it is neces-
sary to have a set of variables covering the whole area. Classical procedures for
susceptibility mapping use variables gathered from aerial photointerpretation and
fieldwork. These procedures are costly and time consuming and it becomes evident
that, because of this, the extent of the area analysed is often restricted. On the other
hand, the coverage of large areas often requires the contribution of different expert
teams that may add some degree of heterogeneity and error. In that respect, the
development and availability of GIS has increased the capabilities of producing and
handling large amount of data. Automatic data capture, especially from the Digital
Elevation Models (DEM), allows the extraction of variables from large areas with
greater objectivity than former methods. The DEM used here is a grid of 15 x 15 m
supplied by the Catalonian Cartographic Institute. It was obtained by restitution
of aerial photographs at 1:22,000 scale taken in summer of 1983. GIS-generated
variables can be easily exported to powerful statistical packages and perform the
susceptibility analysis. Recent versions of GIS also incorporate several statistical
commands and functions, thus allowing an integrated analysis.

In the following sections, the procedure for obtaining variables and the suscept-
ibility analysis is described.
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3.1. SELECTION AND ACQUISITION OF VARIABLES

Several terrain parameters related to the occurrence of the slope failures have
been selected for their inclusion into the multivariate statistical analysis. A total
of 17 variables have been produced. From them, 14 are digital terrain models
(DTM) derived directly or with simple algorithms from the DEM. Six DTMs (cell
height, slope angle, slope aspect, curvature, transverse curvature, and longitudinal
curvature) were obtained directly from the DEM or with commands available in
the GIS used (Arc/Info version 7.2.1). We used the Grid module, a cell-based
geoprocessing toolbox integrated in the Arc/Info package. As shown in Table I,
eight parameters (sinusoidal slope angle, solar radiation, slope roughness, wa-
tershed angle and both watershed length and area of the whole basin and that
of the colluvial deposits) were created from algorithms that we have especially
defined. Two parameters, watershed length and area of the colluvial deposits, re-
quired additional field information to be created from the DEM (Santacana, 2001).
Finally, variables not derived from the DEM were obtained by means of photo-
interpretation and fieldwork (land use, thickness of the superficial formations and
landslide inventory). This information was digitised and then converted into raster
format to carry out the analysis. Table I shows variables used in the analysis while
Figure 1 is a sketch explaining some of the variables used. The next paragraphs
describe the expected relationships between the variables used and the occurrence
of slope failures.

Precipitation is the main triggering mechanism of shallow landslides in the East-
ern Pyrenees. Several researchers have found an increase of rainfall with altitude
and a consequent increase in the number of slope failures (Gallart and Clotet,
1988). The slope angle is the main geometric instability. The higher the angle
the greater is the shearing component of the forces acting at the potential surface
of failure (Jones et al., 1961). The geological and morphological diversity of the
study area has a particular effect on the threshold angle for slope failures. The
latter occur in colluvium blanketed slopes or on weathered argillaceous formation.
It appears that, even though a minimum angle is needed to cause slope failures,
such failures are absent on very steep slopes (over 45°). This is because neither
colluvium nor weathered clay can stand on these slopes. Steep slopes are made of
resistant bedrock and are stable. To reflect this effect, a sinusoidal function of slope
angle (sin 28) has been also used (Baeza, 1994). In order to determine which is the
most significant variable, slope angle and sinusoidal slope angle were included
separately in the discriminant analysis.

Both slope aspect and solar radiation are related to available soil moisture,
amount of vegetation and rainfall storm paths. High roughness slopes are more
prone to landsliding because gradient changes favour rainfall infiltration into the
soil. The slope curvatures indicate the capability of water run-off concentration
or dispersion. Several studies suggest that shallow landslides mostly occur in
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Table I. Variables derived and non-derived from DEM, used in the analysis.

Variables not

Variables derived from DEM derived from DEM
Variable GIS Algorithm
function
DEM Height above mean sea level (m) x
Slope Slope angle (£°)
Geometry  Sinusoidal slope angle X
Slope aspect (° X

Solar radiation (0-255)
Roughness (0-1)
Curvature
Longitudinal curvature

Transverse curvature

Watershed  Watershed area (logarithm) X
Dimension Watershed length (log) X

Area of deposits (log) X

Length of deposits (log) X

Mean watershed angle X
Land use Density of vegetation
Geology Presence of surficial fm

Thickness of surficial fm

Landslides Rupture zone

(inventory)

topographic hollows where subsurface flow concentrates (Reneau and Dietrich,
1987).

The watershed area is related to the amount of water that the soil can collect
and infiltrate. A greater area is associated with more water infiltrated and higher
chances of landsliding (Oyagi, 1984). The length of watershed indicates the size
of watershed area, the capability to concentrate groundwater and to accumulate
sediments. A close relationship has been found between the distance to water
divide and location of the slope failures (Oyagi, 1984). Both area and length of
superficial deposits show the extent where the water may infiltrate into the material
susceptible to failure. Finally, the mean slope angle of the watershed indicates the
capacity to help water infiltration into the soil.

Land use (density of vegetation) has a twofold influence on the stability of su-
perficial deposits: hydrological (capacity of infiltration into the soil, soil moisture,
groundwater level, etc.) and mechanical (root strength) (Greenway, 1987). The
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Figure 1. Cross-section with some variables used for the analysis (WD: area of superficial de-

posits; W: watershed area; L: watershed length; LF: length of superficial deposits; G: thickness
of superficial deposits; B: mean watershed angle, and «: slope angle).

variable thickness of superficial deposits indicates the capability of generating pore
water pressures and the presence of susceptible material.

3.2. STATISTICAL TREATMENT

Statistical analysis can only be undertaken with those cells having a landslide
status (failed or unfailed). The data treatment in the GIS will work with raster
format. Slope failures (shallow landslides) are points that have been rasterized and
converted to cells (failed cells). The rest of the cells have been defined as unfailed.

In the 1982 rainfall event, 280 shallow landslides were triggered in the study
area, and all of them have been used in the analysis. The number of cells showing
slope failures is much smaller that the number of cells of the study area (about
170,000 cells). In order to avoid the bias of the function obtained, the discriminant
analysis requires population sets having a similar number of individuals (Dillon
and Goldstein, 1986). Therefore, because the number of failed cells is small, the
sample set of stable slopes must be also small. Consequently, to derive the discrim-
inant function, we have selected a random sample of 140 failed cells and the same
number of unfailed cells, while we have reserved the remaining 140 failed cells
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for validation purposes. The sample was obtained by the GIS with an algorithm

created for sampling.

Before proceeding with the statistical analysis, variables non-derived from the
DEM have been weighted according to our expert criterion (i.e., land use). Fur-
thermore, some variables derived from the DEM have been transformed in order
to avoid errors or senseless results by the operations of the statistical analysis (i.e.,
zero values have been substituted by very small quantities to allow multiplication
and division).

From the GIS, the random sample has been exported to the SPSS statistical
package for treatment and to obtain the discriminant function. The value that the
function takes at each cell is used as susceptibility rating. The data treatment
involved the following steps:

(a) Test of normal distribution of variables (Kolmogorov-Smirnov test) and trans-
formation of those that are not normally distributed. Both watershed area and
length showed a skewed distribution and were transformed using logarithms to
normal ones

(b) The Factorial Analysis (Principal Component Analysis) was performed to
determine possible correlations between variables. Three of the groups of
variables have shown colinearity (Table II): those related with watershed
dimension, slope angles and slope curvatures

(c) The variable showing the highest significant level was selected from each
group, to form a set of independent variables. The selection was made by
means of the contrast analysis (T-test and One-Way test). Considering F-values
of the One-Way test, variables with highest significance were (Table III): thick-
ness of superficial deposits, height, sinusoidal slope angle, slope angle and
mean slope angle of the watershed. Instead, slope roughness and longitudinal
curvature were the lowest ones.

(d) The discriminant analysis was performed using the selected independent vari-
ables. The discriminant capability of each variable was analysed with the
Stepwise Method. The discriminant function finally selected was that giving
the best classification of the failed cells while taking the lowest number of
variables

It must be taken account that the relative weight of the variables within the discrim-

inant function may not correspond to their significance given by the One-Way test.

The latter evaluates the significance of isolated variables while the discriminant

function quantifies the weight of a set of variables. As sinusoidal slope angle and

slope angle have similar F-values, both have been considered in the discriminant
analysis. Slope angle has shown slightly better results and, consequently, it has
been chosen for the definitive discriminant function.

The discriminant function selected and the main statistical parameters are
shown in Table IV. Discriminant scores of the random sample, obtained from un-
standardised coefficients, range from —3.1 to 3.4, with —0.739 as centroid value
of the non- failed cells and 0.916 that of the cells including slope failures. The
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Table II. Varimax rotated factor matrix with loads over 0.4 of Pobla de Lillet area.

Varimax rotated factor matrix
Variables Factor 1 Factor2 Factor3 Factor4 Factor 5

Slope height —0.782

Slope angle 0.981

Sinusoidal slope angle

Slope aspect 0.860
Solar radiation —0.738 0.548
Roughness 0.476

Curvature 0.888

Longitudinal curvature —0.822

Transverse curvature —0.468 0.677

Watershed area (log) 0.910

Watershed length (log) 0.931

Area of deposits (log) 0.905

Length of deposits (log) 0.914

Mean watershed angle 0.764 0.477

Land-use —0.677
Thickness of deposits 0.864

resultant classification of the random sample, according to its discriminant value,
shows that 82% of the overall cells and 90% of the cells including slope failures
were correctly classified. These results demonstrate the suitability of the variables
selected and of the procedure.

Standardized coefficients of the variables in the discriminant function indic-
ate the influence and the relative contribution to landslide susceptibility. Positive
discriminant values are associated with slope failures while negative ones are asso-
ciated with unfailed slopes. Slope angle is the most powerful discriminant variable
with a coefficient of 0.820, followed by the thickness of the superficial deposits
with 0.689 and the average slope angle of the watershed with —0.440.

In the function, the greater the slope angle, colluvium thickness, and watershed
length, the greater the score, and consequently, the chances of slope failure. Instead,
the increase of the average slope angle of the watershed, slope convexity, and ve-
getation will reduce the score, thus favouring more stable conditions. Summing up,
shallow landslides are more likely to occur in steep unforested slopes, with large
watershed, covered with colluvial deposits, and preferably in hollows.
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Table 1I1. Results of T-test and one-way test of La Pobla de Lillet area (UN: unfailed group; F:

failed group).

Variable T-test One-Way Variable T-test One-way

(group) Mean SD F Sig. (group) Mean SD F Sig.
UN 1165.9 163.6 UN 0.08 1.3

Slope height 40.5 0.0000 Trans. curv. 11 0.001
F 1051.5 155.8 F —-0.39 1.2
UN 238 84 UN 24 1.4

Slope angle 27.8 0.000 Waters. area 6 0.015
F 284 65 F 2.7 1.2
UN 0.7 0.19 UN 14 0.8

Sin. angle 30.7 0.0000 Waters. length 6 0.015
F 0.8 0.13 F 1.7 0.7
UN 107.4  56.1 UN 202 1.5

Aspect 4.5 0.034 Deposit area 14.1  0.000
F 120.1 48.8 F 262 13
UN 151.8 125 UN 1.2 0.9

Solar radiation 4.6  0.032 Deposit length 14.2  0.0000
F 149 10 F 1.6 0.8
UN 0.99  0.01 UN 19.7 122

Roughness 1.1 0.298 Mean w. angle 7.7  0.006
F 098  0.01 F 233 105
UN 0.08  2.05 UN 124 4.1

Curvature 5.2 0.023 Land use 2.8  0.095
F —-045 2.1 F 11.7 3.1
UN 0.003 1.1 UN 2.8 1.1

Long. curv. 0.123 0.726  Thickness 103.2 0.000
F 005 1.2 F 3.9 0.3

4. Susceptibility Map

The discriminant function has been used to prepared the landslide susceptibility
map of La Pobla de Lillet. The function has been solved at each individual cell
using the unstandardised coefficients of its variables. With this operation, a dis-
criminant cell grid has been obtained. The whole range of values that the function
is able to take has been divided in segments of the same size, which define the
susceptibility levels. Each cell is assigned to a susceptibility level according to the
value of the discriminant function takes in it. Figure 2 is the susceptibility map
obtained with these susceptibility levels.
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Table 1V. Discriminant function with standardised and unstandardised coefficients,
classification and other statistical parameters of La Pobla de Lillet area.

Variables Function coefficients
Standardised Unstandardised
Slope angle 0.820 0.108
Thickness of deposits 0.689 0.761
Mean watershed angle —0.440 —0.038
Transverse curvature —0.336 —0.257
Slope height —0.320 —-0.078
Land use —0.291 —0.078
Watershed length constant —1.927
Success
classification (F = 0)
Eigenvalue Wilks-A  x2 Prob. %  Unfailed Failed
0.682 0.595 162.438  0.000 Stable cells 751% 24.9%
Unstable cells 9.9% 90.1%
Global 81.8%

LEGEND
- EXTREMELY LOW

[ VERY LOW

B veay HicH

- EXTREMELY HIGH

1Km

Figure 2. Landslide susceptibility map of La Pobla de Lillet area (about 179,000 cells).
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Figure 3. Partial 3-D view of the La Pobla de Lillet landslide susceptibility map. The area
corresponds to that included in the frame of Figure 2. Landslides (irregular contours) have
been overlapped to visualise their adjust to the most landslide-susceptible cells.

The consistency of this map has been checked using landslides of the 1982
event that were not included in the random sample. In order to do so, a mask was
created to exclude the cells of the random sample. Therefore, the susceptibility map
(Figure 2) has been created with the rest of cells of the study area, about 170,000
cells. Figure 3 shows a partial 3-D view of the map. Landslides have been included
to visualise whether they coincide with the most landslide-susceptible cells.

An index of relative landslide-density (R) has been used to validate the results.
The index is defined as follows (Baeza and Corominas, 2001):

R = ((n;/N;)/Z(n;/N;)) x 100,

[T%21}
1

where n; = number of landslides in susceptibility level
the cells of susceptibility level “i”.

It may be expected that slope failures will appear in cells having higher dis-
criminant scores (from moderate to extremely high-susceptibility levels). Table V
shows the R index for each susceptibility level. The index shows an increase of the
number of landslides with the level of susceptibility. We may thus conclude that the
distribution of slope failures observed in these levels indicates that susceptibility
levels are consistent.

, N; = area occupied by
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Table V. Results of the relative-density index in the susceptibility map
of La Pobla de Lillet area.

Susceptibility level ~ No. of landslides  No. of cells R Index

Extremely low 0 258 0.00
Very low 0 6,634 0.0

Low 1 55,124 0.24
Moderate 18 74,685 3.26
High 100 38,582 35.01
Very high 9 1,977 61.49
Extremely high 0 49 0.00

Table VI. Number of labour days required for acquiring variable data. One field-work day al-
lows acquisition of data from 3 slope failures or stable slopes. Labour days for aerial photo
interpretation, and data manipulation in the office are not included.

Data acquisition No.of  No. of unfailed  Slope failures  Unfailed slopes  Total

Procedure failures  slopes labour days labour days labour
days

Field work 150 50 50 16 66

Automatic capture = 272 136,000 1 3 4

5. Discussion

The results also show the significant discriminant capability of some variables,
such as colluvium thickness. The inclusion of this variable improves the number
of cells properly classified with the function between 5 to 10%. Even though this
type of variable can not be easily gathered, it must be included in the susceptibility
assessment.

The main advantage of the presented procedure is the rapidity provided by the
automatic capture of most of factors from the DEM in front of traditional methods.
Table VI shows a comparison between the time needed to collect data by photoint-
erpretation and field work, and the automatic data capture from DEM. We estimate
that we can obtain, in a traditional way, data from 3 landslides or 3 stable slopes
per day. Field gathered parameters belong to Baeza (1994) and automatic ones to
this study (Santacana, 2001). The Table VI only shows used days for fieldwork but
it does not include the time involved in other processes as photointerpretation or
digitalisation. Besides the capability of covering large areas, the objectivity and the
repetitiveness of the analysis with different samples are clear advantages in front
of traditional methods.
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The discriminant function based on data captured automatically has allowed us
to correctly classify 90% of cells, which may be considered as good classification
although it is slightly worse than that obtained with the same procedure, 96%
of cells, using data gathered directly in the field (Baeza and Corominas, 2001).
Furthermore, although resultant classification of the area is acceptable, the statistic
controls as Lambda of Wilks or eigenvalue (Table IV) suggest that the selected
function has lower discriminant capability than the traditional method (Baeza,
1994). With the GIS-aided procedure, failed and unfailed populations overlap in
a great range of discriminant values of the selected function and of the created
susceptibility map. There are two main reasons to explain this: the use of variables
derived from DEM and the use of a sample without previously confirmed stable
cells.

Most of the variables derived from DEM are obtained from neighbourhood
operations and the resultant values of cells are usually mean values. Because of
this, the range of values from variables derived from DEM is smaller than those
obtained directly in the field, and it is close to average values. It happens usually
when using values obtained from areas (such as cells in variables derived from
DEM) instead of values obtained from points (as the information gathered from
field work).

The sample used to derive the discriminant function included a 50% of unfailed
cells. These cells were those that had no slope failure during the 1982 rainfall
event. However, it does not mean that some of them could be susceptible to pro-
duce a slope failure in the future. The 1982 rainfall event was not homogeneously
distributed throughout the study area and some cells might have not received the
critical amount of rainfall to produce the failure of the slope. Therefore a part of
the unfailed population that overlap the failed one might include susceptible cells
in which the critical rainfall to produce landsliding was not reached.

6. Concluding Remarks

The results of this investigation can be summarized as follows:

(1) The automatic capture of most of variables related to the occurrence of shal-
low landslides by derivation from DEM has several advantages, namely: the
rapidity of the procedure, the objectivity and reproducibility of the results. The
results of the susceptibility analysis are only slightly worse than those obtained
in using data gathered in the field.

(2) The meaning of the discriminant function indicates that shallow landslides are
more likely to occur in steep unforested slopes, having both large and gentle
watershed, covered with thick colluvial deposits, and preferably in hollows.

(3) The results of the susceptibility map have been checked with landsides that
occurred in the 1982 rainfall event. The distribution of the landslide density
among the different susceptibility levels is coherent. Landslides do not occur
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in the lowest susceptibility levels while their density increases in the highest
levels.

(4) The main drawback is that, at present, only few regions have availability of
DEM with enough accuracy and resolution to cope with small size landslides.

(5) This method is efficient because shallow landslides have simple failure mech-
anism, essentially controlled by slope angle and thickness of superficial
deposits. Extension to other phenomena has to be undertaken carefully.
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