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Abstract 
The results of an experiment conducted in Spain over the 
Soil Moisture Measurement Stations Network of the Univer-
sity of Salamanca (REMEDHUS) are presented. The observa-
tions included airborne observations from hyperspectral 
optical, thermal, and microwave sensors coinciding with 
intensive field measurements. The hyperspectral optical 
and thermal datasets were first analyzed and processed to 
select the best hyperspectral features to be included in the 
soil moisture retrieval procedure. A linear model linking the 
selected hyperspectral features to the microwave observa-
tions and the in situ soil moisture is proposed. The applica-
tion of this model resulted in soil moisture estimates that 
agree with in situ measurements (correlation coefficient: R 
>0.76, root mean squared differences: RMSD <0.07 m3m-3). 
The hyperspectral dataset strengthened the link between 
optical, thermal and microwave L-band observations with 
soil moisture, and provided a spatial framework to disag-
gregate soil moisture at very high spatial resolution (3.5 m), 
useful in hydrological modeling and precision agriculture. 

Introduction
The first two space missions dedicated specifically to soil 
moisture retrieval from passive L-band observations are lead-
ing to intense scientific activity. The European Spatial Agency 
(ESA) Soil Moisture and Ocean Salinity (SMOS) mission (Kerr 
et al., 2010) has been providing soil moisture maps since 
November 2009. The US National Aeronautics and Space 
Administration (NASA) plans to launch the SMAP (Soil Mois-
ture Active Passive) mission in 2014; this satellite will carry 
a radiometer and a synthetic aperture radar on-board (En-
tekhabi et al., 2010). Due to practical constraints on antenna 
size and the altitude of low Earth orbits, the spatial resolu-
tion of SMOS and SMAP radiometers is limited to 40 to 50 km. 
This resolution is adequate for many global applications but 
restricts the use of the resulting data in regional studies over 
land, where a resolution of 1 to10 km is needed (Crow et al., 
2000; Entekhabi et al., 1999; Piles et al., 2011). Multi-sensor 
disaggregation techniques are emerging as a new technique 
for refining broad resolution observations using a variety 

of optical sensors. Combining optical and microwave data, 
some studies have shown that soil moisture estimates can be 
obtained at intermediate spatial resolutions that compare well 
with in situ data. Visible/infrared/thermal sensors are used to 
provide indirect measurements of soil moisture at high resolu-
tion; these measurements are combined with accurate passive 
microwave observations to construct soil moisture maps with 
resolutions ranging from several tens of meters with 15 day re-
visit (Merlin et al., 2013) to 1 km daily (Kim and Hogue, 2012; 
Merlin et al., 2005; Piles et al., 2011). Microwave/optical data 
merging methods for estimating high resolution soil moisture 
are generally based on the intrinsic relationship between 
vegetation indices (VI) and land surface temperature (LST) 
with soil moisture using empirical approaches (Carlson et al., 
1994; Price, 1990; Sobrino et al., 2012). This relationship can 
be graphically represented by a triangular-trapezoidal shape, 
which is formed by the scatter plot of surface temperature ver-
sus. vegetation indices under a full range of vegetation covers 
and soil moisture availability (Tang et al., 2010). The so-called 
surface temperature-vegetation index (LST-VI) triangle method 
was first introduced during the 1990s by Price (1990) and later 
elaborated upon by Carlson et al. (1994 and 1995). It has been 
frequently used to estimate evapotranspiration or evaporative 
fraction (Batra et al., 2006; Jiang and Islam, 2001; Moran et al., 
1994; Venturini et al., 2004), determine soil moisture (Gillies 
et al., 1997; Sandholt et al., 2002) and downscale coarse-scale 
microwave soil moisture estimates (Chauhan et al., 2003; 
Kim and Hogue, 2012; Piles et al., 2011). In Piles et al. (2011), 
a regression analysis was performed relating soil moisture 
reference data (SMOS L2 product) to MODIS LST, MODIS Normal-
ized Difference Vegetation Index (NDVI) and SMOS L1 bright-
ness temperatures (BT). The objective was to develop a robust 
model to link 40-km SMOS and 1-km MODIS observations to 
soil moisture and to generate a SMOS-L4 soil moisture product 
as an optimal blend of microwave/visible data at 1 km resolu-
tion. In the present study, the objective is to improve upon 
this research line by using simultaneous hyperspectral and 
L-band airborne imagery.  

Hyperspectral sensors have been used primarily to indi-
rectly estimate soil moisture, but the best spectral range for 
detecting soil moisture has yet to be determined. Aside from 
the microwave range, visible near-infrared (VNIR) (0.4–1.4 
μm), near-infrared (NIR) (0.75–1.4 μm), short-wavelength 
infrared (SWIR) (1.4–3.0 μm), and thermal infrared (TIR) 
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(3.5–20 μm) have shown promising results (Finn et al., 2011). 
Remotely sensed indices in the VNIR range have been com-
pared against in situ observations (Adegoke and Carleton, 
2002; Schnur et al., 2010; Wang et al., 2007) and modeled 
soil moisture (Farrar et al., 1994), although there is evidence 
that the SWIR region is better suited for measuring soil water 
content (Lobell and Asner, 2002; Whiting et al., 2004). As an 
alternative to broad-band multispectral remote sensing sen-
sors, which cover relatively wide ranges of the electromagnet-
ic spectrum, hyperspectral sensors collect images with high 
spectral resolution (Finn et al., 2011). 

However, remote sensing observations of soil moisture 
average within-pixel variability, thereby masking the underly-
ing heterogeneity observed at the land surface. The ability of 
hyperspectral data to significantly improve the characteriza-
tion, discrimination, modeling, and mapping of crops and 
vegetation in comparison to broadband multispectral remote 
sensing is well known (Thenkabail et al., 2011). Currently, 
little research has investigated the potential of combining 
microwave BT and hyperspectral solar reflectance; the present 
work proposed the use of hyperspectral observations from the 
Compact Airborne Spectrographic Imager (CASI 550). The ul-
timate goal of the airborne experiment over the Soil Moisture 
Measurement Stations Network (REMEDHUS) of the Univer-
sity of Salamanca was to explore the potential of using CASI 
hyperspectral features combined with BT and land surface 
temperature to obtain fine-scale soil moisture estimations. 
First, analysis and selection of the hyperspectral dataset are 
required. When working with a wide number of hyperspectral 
bands, no single best approach is available to determine the 
optimal number of bands that will provide the best estimates 
of vegetation characteristics (Thenkabail et al., 2004). Feature 
selection reduces the dimensionality of the data by select-
ing only a subset of the measured features to act as predictor 
variables. Large data volumes can be reduced through several 
data mining methods, such as projection based methods 
(principal or independent component analysis), similarity or 
divergence measures, lambda versus lambda R2 models, and 
hyperspectral indices (Thenkabail et al., 2013). The optimal 
information required to quantify crop characteristics may be 
captured with a relatively small number of specific narrow-
bands (Thenkabail, 2011). Here, the targeted vegetation char-
acteristics should be related to the soil moisture condition; 
therefore, the preliminary objective was to determine whether 
consistent differences occurred in the VNIR spectral response 
between common land uses, specifically in regard to their dif-
ferentiated soil moisture content. 

The specific objectives of this study are as follows: (a) to 
determine the optimal vegetation descriptor from the hyper-
spectral imagery through analyzing and processing individual 
narrow wavebands, ratios of reflectance bands, and deriva-
tives of reflectance spectra, and (b) to evaluate the joint use of 
hyperspectral products, thermal observations, and L-band data 
to estimate soil moisture. With the latter aim, the polynomial-
fitting model proposed in Piles et al. (2011) for downscaling 
SMOS soil moisture estimates is tested, and the results are 
compared at very high resolution with in situ measurements.

Dataset 
Study Area and Field Campaign 
The study area is located within a 1,300 km2 area (41.1° to 
41.5°N; 5.1° to 5.7°W) in a central semiarid sector of the 
Duero basin, Spain (Figure 1), where the REMEDHUS network 
(Sánchez et al., 2012) is providing soil moisture data since 
1999. The climate in this region is a continental semi-arid 
Mediterranean with a pronounced seasonality typical of the 
Mediterranean climate. For example, the summer, the season 
in which the experiment took place, is hot and dry. The 

area is relatively flat but has a gentle slope, with the altitude 
declining towards the northeast, where the Duero River is 
located (Figure 1). A detailed description of the area and the 
REMEDHUS equipment can be found in Sánchez et al. (2010). 

Soil moisture measurements were acquired at 0 to 5 cm 
depth using Theta Probe sensors (Type ML2x, Delta-T Devices) 
at 47 test locations during the flight duration. Four random 
measurements were acquired at each location within an area of 
1 m2 and geolocated in the field using a differential Global Po-
sitioning System instrument. Surface soil temperature was also 
measured with an infrared thermometer. All the ground mea-
surements were taken with the aim of reflecting different soil 
moisture conditions in the area; the plots were large enough to 
surpass the spatial resolution of the broader sensor, i.e., 60 m × 
60 m. Additionally, the test sites were selected to cover the dif-
ferent agricultural land uses in the area, including rainfed and 
irrigated herbaceous crops during this period (Table 1). 

Table 1. Characteristics of the Field Plots  

Land use Crop/type Growing stage Soil texture
# of 

Samples

Rainfed	

Cereals Harvesting/stubble
Sandy loam/
loamy sand

29

Sunflower Seed development
Sandy loam/
loamy sand

9

Vineyard Setting fruits Sand 5

Fallow Bare soil
Sandy loam/
loamy sand

7

Irrigated	

Cereals Setting grains Sandy loam 6

Sugar beet Leaf development Sandy loam 4

Sunflower Seed development Sandy loam 3

In addition, data from 16 permanent stations of the REMED-
HUS network were used. Hence, a total of 63 point measure-
ments of in situ soil moisture were collected. One half of the 
samples were used to establish the coefficients of the regres-
sion in the linking model (training subsample). The other half 
of the samples (validating subsample) were used to validate the 
soil moisture maps obtained after applying the linking model.

Flight and Airborne Sensors
The flight took place on 04 July 2012. Airborne hyperspectral 
observations were acquired with two sensors owned by the 
Institut Cartogràfic de Catalunya (ICC): the Thermal Airborne 
Spectrographic Imager (TASI 600) and the Compact Airborne 
Spectrographic Imager (CASI 550). Radiometric data was ac-
quired by the Airborne RadIomEter at L-band (ARIEL-2), which 
was provided by the Universitat Politècnica de Catalunya. 
The characteristics of the sensors are summarized in Table 2. 
Sensors were on-board the ICC Cessna 208 Caravan and the 
acquisitions spanned between 06:30 and 09:45 AM (UTC). Thir-
teen strips were captured to cover the study area with a lateral 
overlap of 40 percent (Figure 1). The flight height (which 
depends on the cross-track spatial resolution required) and the 
number of bands acquired (which depends on the along-track 
pixel dimension and the frame rate) were adjusted to achieve 
a ground spatial resolution of 3.5 m, resulting in a flight height 
of 3,022 m, 72 bands for CASI, and 32 bands for TASI. Weather 
conditions were optimal with clear sky and moderate wind.

CASI 550
The CASI 550 is a VNIR pushbroom sensor working in the spec-
tral range of 400–1000 nm, with up to 288 programmable bands 
and a spectral resolution of 2.2 nm. In this project, 72 bands 
were acquired, covering the region from 406 nm to 957 nm. 
Images were acquired as 14-bit digital values at and converted 
into 16-bit radiances. Geometric correction was applied with a 

746	 Augus t  2014 	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Figure 1. Flight strips and locations of the in situ soil moisture measurements.

Table 2. Characteristics of the Sensors Used in the Data Collection 
Spectral range Bandwidth # of Bands Radiometric resolution FOV Spatial resolution 

CASI 550 406 to 957 nm 2.2 nm 72 14 bits 40.4° 3.5 m

TASI 600 8 to 11.5 μm 110 nm 32 14 bits 40º 3.5 m

ARIEL-2 1.413 GHz 10 MHz 1 14 bits 25º 60 m

(a) (b)
Figure 2. Images of lst (a) before, and (b) after the radiometric normalization.

digital elevation model and ground control points. Atmospher-
ic correction was also applied to retrieve a reflectivity profile 
at the pixel level using the 6s code (Vermote et al., 1997) and 
standard values for the continental-atmospheric model. 

TASI 600
The TASI 600 sensor is a pushbroom hyperspectral thermal 
sensor configured for this work with 32 channels operating in 
the 8 to 11.5 μm range. As with the CASI 550 observations, ra-
diometric calibration and geometric correction were applied. 
Atmospheric thermal contributions were corrected using local 
temperature and relative humidity profiles provided by the 
National Centres for Environmental Prediction (NCEP) and the 

ModTRAN5.0 code. Finally, absolute temperature information 
was retrieved using the Temperature and Emissivity Separa-
tion (TES) technique tailored to TASI spectral properties (Pipia 
et al., 2010). In this campaign, airborne observations were 
continuously acquired during the 3 hour-15 minute flight 
duration. Hence, a marked temperature gradient, approxi-
mately 10K, was induced by the increasing solar radiation 
between the first strips acquired and the last ones, as shown 
in Figure 2. This gradient might yield unreasonable values of 
soil moisture; thus, a relative radiometric normalization was 
proposed, using the central strip as the baseline to tie the rest 
of strips. This procedure balances the LST observed during 
the entire flight and allows the application of the mosaic of 
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temperatures to be applied to the linking model (Figure 2). 
Nevertheless, the linking model was tested both with and 
without this pre-treatment, and the results were compared.

ARIEL-2
The L-band radiometer (ARIEL-2) has a seven patch antenna 
array designed to be fitted in the aircraft photogrammetric 
windows (ø = 50 cm), with a half power beamwidth (HPBW) 
of 25° and a radiometric accuracy of 1K. ARIEL-2 is the second 
version of the ARIEL-1 radiometer prototype (Acevo-Herrera et 
al., 2010) developed for small remote controlled aircrafts, and 
it includes an internal cold load for improved calibration. It 
has a single nadir-looking beam and a single polarization (hor-
izontal). The spatial resolution of the observations is flight-
height dependent. For convenience, in this study ARIEL-2 
observations have been resampled to a 60-m regular grid. 

Methods
Hyperspectral CASI Processing and Selection
The processing of hyperspectral bands in this work was not 
designed to determine the optimal number of bands required 
to discriminate crop species (which is a standard prepro-
cessing of hyperspectral datasets) but rather to detect which 
bands behave in a different manner depending on the dif-
ferent soil moisture content of each sample. Spectral curves 
were obtained from every CASI band for each field plot. Bands 
affected by systematic errors, spectral inconsistencies and/or 
atmospheric absorption (Thenkabail et al., 2004) were detected 
and removed. At the time of the experiment, the soil moisture 
content differed greatly among land uses; therefore, the mean 
spectrum of each crop was plotted separately by land uses (Ta-
ble 1). The average soil moisture content was also indicated. 
The aim of qualitatively comparing these plots was to detect 
possible differences in spectral curves related to soil moisture. 

For a quantitative analysis, the lambda versus lambda R2 
model (Thenkabail et al., 2004, 2011, and 2013) was ap-
plied to provide a rigorous search criterion or data-mining 
technique to highlight wavebands with unique information 
content. For each sample, every single CASI waveband was 
correlated with every other waveband, leading to lambda 
versus lambda plots. A very high value of R2 between any 
two wavebands indicated similar or redundant information. 
The areas of lowest correlation between wavebands indicated 
that the two bands contained unique information. Because 
the samples were clustered and plotted by land uses (which 
in turn influenced the soil moisture content), the compari-
son between the R2 plots provided quantitative information 
for discriminating the best bands to be compared for the soil 
moisture estimation. In other words, the objective was to find 
which CASI bands were most affected by the different soil 
moisture contents observed in the samples. Once selected, 
these bands will be assessed as vegetation proxies in the soil 
moisture linking model, in the form of isolated bands, deriva-
tives or combinations of them.

Hyperspectral Features versus Soil Moisture
The applicability of the hyperspectral bands to the direct 
estimation of soil moisture was also assessed. The correlations 
between soil moisture and reflectance in individual narrow 
frequency bands, derivatives of bands and hyperspectral 
indices were calculated. Previous studies have correlated soil 
moisture content to hyperspectral observations in the VNIR 
region, either by comparison with the simple bands, deriva-
tives, indices or ratios; by analysis of principal components; 
or by another approach (Bach and Mauser, 1994; Ben-Dor et 
al., 2002; Kaleita et al., 2005; Wang et al., 2011); most of these 
studies were conducted in laboratory conditions. Although 
some of these studies have shown that VNIR spectra can be 

used to produce quantitative soil moisture surface maps, quan-
tification of soil moisture using these wavelengths remains 
difficult because other soil chemical and physical properties 
and vegetation cover also exhibit significant variability; it is 
difficult to decouple these effects (Lobell and Asner, 2002). 

A preliminary analysis was performed, comparing each 
CASI hyperspectral band with the soil moisture data collected 
at the 63 measurement points. The statistical correlation of 
each CASI band with the soil moisture ground measurements 
was investigated. 

It has been suggested in the literature that spectral deriva-
tives have important advantages over spectral reflectance, 
such as their ability to reduce variability from changes in illu-
mination or soil/litter reflectance (Blackburn, 2004) and their 
feasibility of defining the wavelength position of the red edge. 
The relationship of the first and second derivatives of the re-
flectance spectra with soil moisture has also been investigated.

Ratios of CASI reflectance in narrow bands were also tested. 
The indices used in this study were the Normalized Difference 
Vegetation Index (NDVI; Equation 1) (Gamon et al., 1992; Rouse 
et al., 1974), normalized differences in the red-edge region 
(Equations 2, 3, and 4) (Vogelmann et al., 1993), the Modified 
Triangular Vegetation Index (MTVI; Equation 5) (Haboudane et 
al., 2004), and the Transformed CARI (Cab Absorption in Reflec-
tance Index, TCARI, Equation 6) (Haboudane et al., 2002). These 
indices are common in the literature, but their selection was 
based upon the regions of the reflectance curve that showed 
distinctive responses in the comparison of wet and dry 
samples from the previous analysis of lambda by lambda R2:

	 NDVI = (R774 – R677)/(R774 + R677)	 (1)
	 Red Edge = (R734 – R747)/ (R715 + R726)	 (2)
	 Red Edge 1 = (R725 – R712)/ (R725 + R712)	 (3)
	 Red Edge 2 = (R734 – R720)/ (R734 + R720)	 (4)
	 MTVI = 1.2[(1.2(R800 – R550) – 2.5(R670 – R550)]	 (5)
	 TCARI = 3[(R700 – R670) – 0.2(R700 – R550)/(R700/R670)].	 (6)

The objective of this analysis was twofold. In addition to the 
study of the direct relationship of CASI reflectance with soil mois-
ture, this analysis aimed to find the best hyperspectral descriptor 
of soil moisture to be included in the proposed linear linking 
model to improve the accuracy of soil moisture estimates. 

The NDVI-LST 2D Space and the Proposed Model
The triangle-trapezoid method is based on the scatter plot of 
LST and NDVI in two-dimensional space. The resulting figure 
shows that the pixels for a specific area and date typically 
form a triangle or trapezoid in which a “wet” edge and a 
“dry” edge along the boundaries can be determined (Kim and 
Hogue, 2012). The premise of the triangle method is that LST 
is sensitive to soil moisture content and vegetation cover (Kim 
and Hogue, 2012). Identification of the triangular shape in the 
pixel distribution requires a flat surface and a large number 
of pixels over an area with a wide range of soil wetness and 
fractional vegetation cover (Carlson, 2007).

Soil moisture downscaling algorithms have been devel-
oped based on the unique relationship between soil mois-
ture, NDVI, and LST for a given region under specific climatic 
conditions and land surface types (Chauhan et al., 2003; Kim 
and Hogue, 2012; Piles et al., 2011). This relationship can be 
expressed through a regression formula that links soil mois-
ture to vegetation descriptors (such as NDVI or other indices or 
derivatives) and LST, as follows (Equation 7):

	
SM a NDVI LSYij

i j

j

n

i

n

=
==
∑∑ * *

00 	
(7)

where SM is soil moisture, aij are the coefficients of the 
polynomial relationship, and the subscripts i and j pertain 
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to NDVI* and LST*, which are the scaled values between the 
minimum and maximum NDVI and LST, respectively (Equa-
tions 8 and 9). For NDVI, minimum correspond to bare soil and 
maximum to vegetation cover close to 100 percent:

	 NDVI*= (NDVI – NDVImin)/(NDVImax – NDVImin)	 (8)
	 LST*= (LST – LSTmin)/(LSTmax – LSTmin)	 (9)

Chauhan et al. (2003) added the surface albedo to the right 
side of Equation 7 to strengthen the relationship and expanded 
it to the second order polynomial. Piles et al. (2011) proposed 
a downscaling algorithm for SMOS built upon this schema and 
showed that adding BT to Equation 7 was necessary to capture 
soil moisture variability at 1 to 10 km spatial resolution. This 
addition strengthens the weight of the radiometer high sensi-
tivity to soil moisture content (Schmugge et al., 2002), while 
keeping the spatial detail of the VNIR information in the model. 
Note that the relationship between BT at L band and the surface 
soil moisture is the basis of the passive missions dedicated to 
surface soil moisture retrievals, such as SMOS and SMAP.

In this study we explored the synergies of TASI-derived 
LST, different CASI-derived vegetation indices, ARIEL bright-
ness temperatures and in situ soil moisture using the follow-
ing linear linking model, which is a simplification of the one 
proposed in Piles et al. (2011):  

	 SM = a0 + a1VI* + a2LST* + a3BT*	 (10)

where SM is the estimated soil moisture, a0 is a standalone 
coefficient, and a1, a2, and a3 are the coefficients of VI*, LST* 
and BT*, respectively. A system of linear equations was set up 
for the pixels of the in situ training subsample using Equa-
tion 10. The value of each point measurement was extracted 
from each image at its original resolution (3.5 m for CASI and 
TASI, 60 m for ARIEL). The training subsample was selected 
as being representative of the different land uses. Note that 
the subsample selection within each land use did not affect 
the coefficient determination (not shown). The system was 
solved to obtain the regression coefficients: a0, a1, a2, and a3. 
The hyperspectral features that were best correlated to soil 
moisture in the former analysis were tested as an alternative 
to NDVI in the model. Metrics of the regression (the determina-
tion coefficient, R2; the root mean square error, RMSE; and the 
p-value at 95 percent confidence level) were used to evaluate 
the performance of the linking model. 

Once the linking model was set up, it was applied to 
CASI, TASI, and ARIEL imagery, and the results were compared 
with the validating subsample. The metrics applied were the 
bias, the standard deviation, the root mean square difference 
(RMSD) and the correlation coefficient (R) with a p-value at the 
95 percent confidence level. These are the metrics typically 
used to predefine the accuracy requirements of a satellite’s 
soil moisture product (Kerr, 2007; Loew and Schlenz, 2011; 

Sánchez et al., 2012). The R (Pearson) value was used as an 
indicator of the strength and direction of the comparisons, 
and R2 was used to describe how well the soil moisture can be 
predicted by a multiple regression approach.

Results and Discussion
Hyperspectral and Lambda versus Lambda R2 CASI Analysis
The analysis of the spectral curves detected two wavelength 
portions of the spectra (754.5 to 762.18 nm and 925.9 to 948.83 
nm) affected by atmospheric absorption, corresponding to CASI 
bands (47 to 48 and 69 to 70 to 71, respectively). Hence, the 
data in these bands were removed from the analysis. The last 
band (72) was also removed to avoid isolated data. Accord-
ingly, a total of 68 bands were used in the analysis.

Hyperspectral curves were plotted, corresponding to spe-
cific species involving land uses, i.e., irrigated crops (Figure 
3a), rainfed crops (Figure 3b), and fallow (Figure 3c). When 
the data were analyzed, the mean spectral curve from plots 
with the same crop was used. 

After a simple visual analysis, some qualitative differ-
ences in the spectral curves related to the soil moisture can 
be distinguished. The typical well-watered vegetation curve 
corresponded to the irrigated crops (Figure 3a), where a high 
reflectance in the near-infrared area and a low reflection in the 
red region are noteworthy; this pattern is most pronounced for 
the sugar beet crop. On the contrary, the rainfed crops curve 
(Figure 3b), which is similar to that of the bare soil (fallow, 
Figure 3c), increases slightly from the visible to the infrared. 
The increase is more pronounced for cereals than for the other 
rainfed crops, as the cereal plots were harvested prior to the 
data collection, and it can be assumed that this crop behaves 
as bare soil (Figure 3c). The rest of the rainfed crops with 
vegetation activity (vineyards and sunflowers) showed pat-
terns similar to bare soil; the sparse coverage of these plants 
and their limited activity due to water scarcity contribute to 
a signal similar to the soil spectral response. The different 
spectral responses for the same crop under rainfed/irrigated 
conditions are notable in Figures 3a and 3b for sunflowers. 

The soil irrigation status more affected the shape of the 
curve than the reflectance quantities, notably in the visible 
region. Identifying the precise regions where the changes took 
place was the aim of the lambda versus lambda correlation 
analysis, following the model of Thenkabail et al. (2004 and 
2013). Lambda versus lambda plotted areas with the least R2 
values for two wavebands were the areas with the highest 
information content (Thenkabail et al., 2004). For this study, 
a 68 × 68 band-correlation matrix was developed, and the 
correlation was converted to R2. This dataset provided 4,624 
coefficients involving all possible combination of wavebands, 
which were represented as a raster plots (Figure 4). The R2 

(a) (b) (c)
Figure 3. Mean spectral profiles of hyperspectral datasets for crop species and land uses in the study area: (a) irrigated crops 
(b) rainfed crops, and (c) fallow areas.
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values for all the samples were plotted just below the diago-
nal of the matrix (2,312 coefficients), as values on either side 
of the diagonal were the transpose of one another. Above the 
diagonal, the coefficients for irrigated, rainfed and fallow 
samples are shown in three plots (Figure 4a, 4b, and 4c). 

These plots, together with the quantitative analysis of R2, 
provided the wavebands with the least redundancy and identi-
fied those that best model the vegetation spectra response to the 
soil moisture. The strength of the hyperspectral data is best test-
ed by plotting lambda versus lambda plots within a single land 
use (e.g., different rainfed crops), where spectral similarities 
are likely to be close. The cross-correlations between different 
plant species or land uses do not test the strength of hyperspec-
tral data since these categories already have very distinct spec-
tra (Figure 3) (Thenkabail et al., 2004). In this case, the most 
differentiated pairs of bands are not the same for rainfed and ir-
rigated plots because of the different growing conditions related 
to their water availability. Thus, the lambda versus lambda R2 
not only provides the best combination for each land use but 

also indicates the differences among each land use, which is 
expected to be related to different soil moisture contents.

Taking a threshold of R2 <0.03 for paired bands, the regions 
containing unique information (the least redundancy) for 
each land use are extracted (the table containing all R2 values 
is not presented). For irrigated crops, the best spectral region 
combinations spanned between the region from 406 to 505 
nm versus the region from 724 to 926 nm and the region from 
620 to 678 nm versus the region from 731 to 926 nm. For the 
fallow samples, the best combinations were the region from 
406 to 437 nm versus the region from 610 to 926 nm. For 
rainfed samples, any pairwise combination of bands afforded 
an R2 below this limit. Thus, since both irrigated and fallow 
samples coincided for the regions with least correlations in 
the range between ~400 to ~500 nm versus ~700 to ~900 nm, 
a definite and useful pair of hyperspectral bands were recom-
mended, comparing the 620–678 nm region (Bands 29 to 37) 
with the 730–926 nm region (Bands 44 to 68) of CASI. These 
bands stressed the differences between soil moisture contents 
and provided non-redundant information at the same time.

Hyperspectral Bands, First Derivatives and Indices as Proxies of Soil Moisture
The correlation values of each CASI band with soil moisture 
measurements (Figure 5) show a shape that coincides with 
the typical reflectance curve of a vegetated area. This result 
could be related to the fact that, for this date, higher soil 
moisture content corresponds to higher NIR reflectance from 
the irrigated crops, leading to a positive correlation in this 
region (770 to 880 nm). Conversely, the very low soil moisture 
content corresponds to bare soils or soils without vegetation 
activity (stubble), with typically high reflectance in the red 
region (650 to 700 nm). For this reason, the correlation of the 
reflectance spectra with soil moisture is negative in the red 
region. The strongest correlation was observed in the 650 nm 
to 700 nm region, with a maximum negative correlation coef-
ficient of −0.59 located between the red and red-edge region 
(Figure 5). In those regions, the higher reflectance occurred 
for the surfaces of bare soil, which were dry during data col-
lection (beginning of July). Furthermore, the negative value 
of R expresses a decrease in the reflectance with increasing 
soil moisture, which is a known effect over the visible to SWIR 
range (Haubrock et al., 2008).

The tests of the first derivatives of CASI reflectance spectra 
show different responses to soil moisture contents in the 701 
to 709 nm, 716 to 724 nm, and 731 to 739 nm bands, all of 
which are in the region of the red edge (Table 3). The ampli-
tudes of the second derivatives did not have a significant cor-
relation to soil moisture; thus, this analysis was discarded.

The hyperspectral indices based on the reflectance at the 
red-edge and the NIR bands had a better correlation to soil 
moisture than the visible-based bands did. Any band or first 
derivative separately showed a better correlation than the 

Figure 4. Lambda versus lambda R2 plots. The areas with the lowest R2 (in black) are the waveband regions with the highest informa-
tion content. The plots include all crop species (below the diagonal) and (a) irrigated crop species, (b) rainfed crops, and (c) fallow 
areas above the diagonal.

Figure 5. Correlation between in situ soil moisture and reflec-
tance by wavelength.

Table 3. Correlation Coefficient (R) of in situ Soil Moisture (63 Samples) 
with the Hyperspectral Indices, the Reflectance Bands and the First Deriva-
tives of Reflectance Spectra; All Correlations were Statistically Significant 

at a 95 Percent Confidence Level 
R

NDVI 0.77

Red Edge -0.75

Red Edge 1 0.76

Red Edge 2 0.80
MTVI 0.72
TCARI 0.69

First derivative, 701 to 709 nm 0.56

First derivative, 716 to 724 nm 0.69

First derivative, 731 to 739 nm 0.62

Band 656 to 663 nm 0.59
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hyperspectral indices (Table 3). NDVI and Red Edges 1 and 2 
were the indices with the best correlations and, therefore, the 
indices that have been included as alternatives in the linking 
model calculation. Nevertheless, further analysis should be per-
formed to find the optimal hyperspectral vegetation indices by 
computing the normalized ratios from every possible two-band 
combination of CASI bands and correlating them with soil mois-
ture. This procedure for extracting the best indices (Thenkabail, 
2013) is similar to the lambda versus lambda analysis for all 
bands.

Because BT was added to the linking model, its perfor-
mance for estimating soil moisture separately was also tested 
using the same procedure as for bands, derivatives and indi-
ces. A correlation coefficient of −0.60 was obtained between 
BT and soil moisture, a worse result than most of the hyper-
spectral features compared with soil moisture (Table 3). The 
correlation between soil moisture and LST resulted in a non-
significant correlation of −0.36, showing a weak relationship. 
We hypothesize that coupling hyperspectral features, LST and 
BT, could improve the estimation of soil moisture compared 
to using a unique estimator.

Performance of the Universal Triangle 
Figure 6 represents a scatter plot including all the image pix-
els in the NDVI-LST space. Soil moisture conditions vary from 
high values on the bottom of the image to low values on the 
top. The dry edge is represented by the top limit of the cloud 
point, which expresses the limit of water stressed conditions 
and warmer pixels, and the bottom limit shows the wet edge 
and colder pixels. The polygon’s edges can be interpreted as 
the minimum/maximum reached by vegetation cover (NDVI) 
and soil moisture (Piles et al., 2011).

Figure 6. Scatter plot of pixel values of ndvi-casi versus lst-tasi 
from the image taken in the remedhus area during the flight 
on 04 July 2012. The dry/warm edge is evident from the 
sharply defined top side of the pixel envelope.

The scatter plot generated from aircraft measurements using 
the CASI and TASI sensors at high spatial resolution shows bet-
ter-defined edges than the plot using broader resolution imag-
ery. As stated by Carlson (2007), the triangle method is effective 
with higher resolution imagery such as that from Landsat or 
aircraft radiometers because the triangle is more easily resolved.

Figure 7 shows a subzone of the NDVI and LST images of 
the study area containing irrigated and rainfed crops and 
the associated scatter plot between NDVI-CASI and LST-TASI. 
The highest NDVI in Figure 7a corresponded to the irrigated 
areas, which in turn showed the lowest LST (Figure 7b). On 

the contrary, rainfed and stubble-covered areas corresponded 
to lower NDVI and higher LST. These two soil uses can be 
separately distinguished in the NDVI-LST scatter plot (Figure 
7c). The cluster of the top-left area of the plot corresponds 
to the drier rainfed areas, whereas the bottom-right cluster 

(a)

(b)

(c)
Figure 7. (a) ndvi-casi image, (b), lst-tasi image, and (c), scatter plot 
of the area where the irrigated and rainfed crops are separately 
distributed.
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corresponds to the wetter irrigated plots. The link between 
the scatter plot and the imagery confirmed the potential of 
the NDVI-LST 2D space for separating the soil moisture content 
associated with the different land uses and agreed with the 
shape and the interpretation of the conceptual LST-NDVI space 
described in previous studies (Lambin and Ehrlich, 1996; 
Sandholt et al., 2002). However, there was a certain variabil-
ity within each category (irrigated and rainfed) in the NDVI-LST 
scatter plot (Figure 7c), most likely due to factors such as crop 
types, soil texture, vegetation coverage, and variability in the 
growing states within each field, as described in Table 1.

A scatter plot containing the LST and NDVI pixels values 
coinciding with in situ observations is shown (Figure 8), in 
which the diameter of each point is associated with the soil 
moisture content. Figure 8 highlights the triangular shape of 
the scatter plot of the entire area in Figure 6 and the sub-
area in Figure 7c. The points located in the right side of the 
triangle, corresponding to higher NDVI and lower LST, exhibit 
the greatest soil moisture contents, which correspond mainly 
to irrigated crops, as observed in the scatter plot in Figure 7c. 
As expected, the available soil moisture allows for vegeta-
tion activity and results in an increase in evapotranspiration, 
which leads to a decrease in the surface temperature. The 
theoretical basis of the triangle is supported here for the very 
clear separation in water content between vegetated and non-
vegetated areas. The irrigated crops are in their growing cycle, 
coinciding with a considerable water supply and high tem-
perature, and they showed strong vegetation activity and full 
green coverage, which can be inferred after the analysis of the 
spectral curve (Figure 3a). However, non-vegetated areas such 
as the harvested cereals, stubble, and fallow plots had low 
NDVI, high LST and low soil water content. It can be stated that 
the soil moisture dependence on NDVI should not be consid-
ered over bare soils. Nevertheless, even for the stubble/bare 
soil areas, the algorithm was able to detect the low soil water 
content with acceptable results (R = 0.52, 0.53, and 0.53 for 
the NDVI and Red Edge 1 and 2 proxies, respectively), although 
there were no differences in land use. It is not easy to define 
the link between soil moisture and the vegetation proxy at 
the partially vegetated areas, such as the rainfed vineyards or 
sunflowers (Table 1). Although they had photosynthetic activ-
ity, there is no clear positive link between the canopy status 
(indicated by the NDVI or other indices) and water content in 
those soils for several reasons. On the one hand, the very low 
soil moisture content of these soils in the summer results in 
less plant development compared to the irrigated crops. On 
the other hand, the resolution of the observations and the 
scattered distribution of these plants hindered a clear sepa-
ration between bare soil and green canopy. In addition, the 
water available for use by these plants resides in the root zone, 
which is a deeper layer than that the observations can pen-
etrate (0 to 5 cm). However, the model is not only based in the 
NDVI response, but also in the LST, and it could be noticed that 
one assumption involved in downscaling algorithms based on 
the LST-VI triangle space is that the sensitivity of LST to soil and 
canopy differs and that canopy temperature is insensitive to 
soil moisture change at surface/deep layer (Tang et al., 2010).

The model also assumes that variations in surface tempera-
ture for a given vegetation index are primarily caused by the 
different soil moisture availabilities rather than by differences 
in the atmospheric forcing (Piles et al., 2011; Tang et al., 
2010). However, it has been shown that this assumption may 
not be valid in the TASI-derived LST without any pre-treat-
ment. A high correlation (R2 = 0.82) was observed between the 
retrieved LST and in situ temperature measurements (showing 
an accurate pre-treatment of the TASI-derived LST); however, 
the temperature gradient induced by the increasing solar ir-
radiance during the flight should be compensated. An attempt 
to compensate for this temperature gradient during the flight 

duration was carried out by applying a radiometric normal-
ization of the strips in the mosaicking process. 

Linking Model 
As stated before, NDVI, and Red Edges 1 and 2 were selected 
as vegetation proxies in the linking model. The linking model 
coefficients were obtained for each case; a good fit was found 
for each of them, with a coefficient of determination R2 >0.72 
(Table 4). Still, the RMSE obtained is below the usual target 
accuracy of soil moisture satellites (0.04 m3m-3) (Kerr et al., 
2010; Entekhabi et al., 2010).

Table 4. Statistical Results of the Linking Model for the Three Vegetation 
Proxies: Coefficients of the Polynomial Fit (a0, a1, a2, and a3) with a  

P-value of 95 Percent, Determination Coefficient (R2) and Root  
Mean Square Error (rmse) 

Model a0 a1 a2 a3 R2 RMSE  
(m3m-3)

NDVI
p-value (95%)

0.09484 0.15028 –0.07375 –0.05054
0.72 0.039

0.06033 2.157E-5 0.13714 0.29183

Red Edge 1
p-value (95%)

0.09871 0.17681 –0.06892 –0.0676
0.75 0.037

0.03485 5.30219E-6 0.14192 0.12468

Red Edge 2
p-value (95%)

0.11127 0.19156 –0.06436 –0.08908
0.76 0.034

0.0083 7.13937E-7 0.13716 0.0262

Because the variables in the linking model are normalized, 
the associated coefficients indicate the importance that each 
variable plays in the linking model. According to these results, 
the best soil moisture predictors are the hyperspectral ratios, 
particularly the Red Edge 2, because a1 is the highest coef-
ficient. LST and BT had less weight in all cases, with smaller 
coefficients (a2, a3). The negative coefficients of LST and BT in-
dicated their inverse correlation with soil moisture, which was 
consistent with their separate comparison with soil moisture.

The linking model was previously trained with the values 
of TASI-derived LST without the proposed radiometric normal-
ization of the LST values (Sánchez et al., 2013). In that prelimi-
nary work, the same dataset and linking model were tested, 
but the raw values of LST were used instead of the normalized 

Figure 8. Scatterplot of ndvi-casi and lst-tasi for the 63 sam-
ples used in the study. Soil moisture content is represented 
by the size of the circle symbols.
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ones. Comparing those results with the present alternative, 
the use of this procedure for the LST improved the results of 
the linking model in terms of R2 (0.66, 0.70, and 0.75 without 
normalization versus 0.72, 0.75, and 0.76 with normalization) 
and RMSE (0.41, 0.38, and 0.35 m3m-3 without normalization 
versus 0.39, 0.37, 0.34 m3m-3 with normalization).

Validation 
The three proposed linking models were applied to the CASI, 
TASI, and ARIEL imagery to obtain very high resolution soil 
moisture data at 3.5 m, and the results were compared with 
the validating subsample point measurements. Statistics of 
the comparison between estimated and observed soil mois-
ture are reported in Table 5. The comparison showed an R 
>0.76 and an RMSD below or equal to 0.07 m3m-3, which could 
be considered very satisfactory. Moreover, the averaged bias 
was close to zero for the three models tested.

Table 5. Statistics of Estimated Soil Moisture versus in situ Soil Moisture 
Measurements: Correlation Coefficient (R), Mean Difference (Bias), Stan-

dard Deviation (sd), and Root Mean Square Difference (rmsd); All Correla-
tions are Statistically Significant at a 95 Percent Confidence Level 

Model Bias (m3m-3) sd (m3m-3) RMSD (m3m-3) R

NDVI –0.008 0.046 0.046 0.76

Red Edge 1 –0.008 0.046 0.064 0.77

Red Edge 2 –0.006 0.047 0.070 0.78

The performance of the algorithm is assessed in a fairly 
wide range of soil moisture conditions (0 to 0.253 m3m-3) 
although we are considering a single day during the dry 
season. Specifically, the study took place during a period in 
which the vegetation activity was exclusively linked with 
the irrigation water supply and when most of the areas (e.g., 
rainfed crops) behaved as bare soil because the plants had 
just been harvested (Table 1). This situation fits well with the 
theoretical basis of the universal triangle, which is based on 
evapotranspiration in several extreme conditions: full-cover, 
well-watered vegetation, full-cover vegetation with no avail-
able water, and dry bare soil (Moran et al., 1994).

The fine spatial detail of the resulting estimates enhances 
the representativeness of the in situ soil moisture measure-
ments for validating the results. In addition, ground samples 
have been selected to cover a wide range of conditions of soil 
moisture contents, which is preferable for validation purpos-
es. Nevertheless, the temporal scale of this campaign hampers 
the study of seasonal changes, which can have a significant 
impact on soil moisture conditions.

The potential interactions between soil moisture estimates 
and observations at high resolution from airborne sensors allow 
for synergistic approaches that can be later transferred to sen-
sors on-board satellite platforms. In this study, hyperspectral 
information from the visible to the infrared domain has been 
combined with microwave observations into an optimal blend 
of accurate and high spatial resolution soil moisture estimates. 
This approach has been tested at the in situ soil moisture mea-
surement locations. The use of the proposed linking model as 
a downscaling approach relies on retrieving soil moisture from 
ARIEL’s BT and solving a system of equations containing all pix-
els in the image. This process is beyond the scope of this paper 
and will be explored in the future. The comparison of the final 
retrieved map with a classified map from CASI is an ongoing 
objective, i.e., qualitatively analyzing where soils with high/
low moisture are located and then quantifying the relationship 
by searching CASI and TASI-derived variables.

The possibility of using hyperspectral data to obtain soil 
moisture estimates is still uncertain but appears promising 
(Finn et al., 2011; Grandjean et al., 2010). Hyperspectral indi-
ces, particularly the Red Edges 1 and 2, have shown the capa-
bility to estimate soil moisture in the retrieval model. The NDVI 

provided a similar good result, and it can be argued that this 
index is easily retrieved from multispectral data. However, the 
advantage of the hyperspectral source over satellite-based data 
relies on its finer spatial resolution and the possibility of con-
trolling the temporal resolution from aircraft mounted sensors 
(Finn et al., 2011). This work shows that a hyperspectral-based 
airborne field experiment is able to provide soil moisture es-
timations with good accuracy and detailed spatial resolution. 
Hence, this method could replace intensive field campaigns or 
high-cost data collection at different spatial scales, and could 
be particularly promising for precision agriculture.

Conclusions
This study contributes to an on-going effort to obtain spatially 
accurate soil moisture data using remote sensors with different 
spectral ranges, which is key to progress in hydrological research 
and in climatic and agricultural applications. The results dem-
onstrate the potential of using hyperspectral data in combina-
tion with thermal and microwave sensors as new inputs in the 
conventional soil moisture downscaling algorithms to improve 
the spatial resolution of passive microwave estimates. A pre-
liminary analysis of the hyperspectral dataset is needed to avoid 
redundancy and to adjust the amount of data to the information 
needed. The result of the lambda versus lambda R2 analysis 
showed that the optimal spectral regions ranged from 620 to 678 
nm and 730 to 926 nm for comparison with soil moisture.

The test of the hyperspectral indices versus the soil mois-
ture showed that indices based on the reflectance on the 
red-edge and NIR regions had a better correlation with in situ 
soil moisture (R between 0.75 and 0.80) than visible-based 
regions. A linear linking model was proposed to relate the 
three suggested vegetation indices along with LST and BT to the 
in situ soil moisture, showing in all cases a very good fit (R2 
>0.72). The hyperspectral bands had a better correlation with 
the observed soil moisture when they were integrated with LST 
and BT in the linking model compared to when they were used 
individually. The results of the model application agreed well 
with the in situ measurements (R >0.76 and RMSD <0.07 m3m-3).

The use of hyperspectral data can lead to significant im-
provements in current soil moisture downscaling algorithms 
based on the synergies between optical, thermal, and micro-
wave L-band observations. Although the sensor used in this 
study was limited to VNIR, the additional capabilities of micro-
wave and thermal images have shown the potential of hyper-
spectral data for soil moisture evaluation at very high spatial 
resolution. Further research must be performed with similar 
data under other climatic and soil moisture conditions.
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