

SOIL ANALYSIS FOR SOIL MAPPING

8th EUREGEO

Barcelona, **15-17 June 2015**

Miquel Aran Eurofins Agroambiental

Key points

- 1.- Soil knowledge and soil mapping
- 2.- The soil laboratory
- 3.- Soil survey procedures and soil analysis
- 4.- Use of soil analysis in soil mapping
- 5.- Soil analysis mostly used in soil mapping
- 6.- New methods of soil data generation
- 7.- Additional notes and conclusions

1.- Soil knowledge and soil mapping

1.- Soil mapping: a wide range of utilities

2.- Soil laboratory and soil data

Soil analysis: a compulsory task for soil mapping

2.- Soil laboratory

EUROFINS AGROAMBIENTAL

Almost 25 years providing soil analytical data for a wide number of users. Soil mapping is as a relevant consumer of soil analytical data.

Laboratory data: 40.000 samples/year. 25000 of them soil samples

- National projects
- International projects
- Classical soil survey and soil mapping projects
- Data base generation often associated with map production

3.- Soil survey procedure and soil analysis

Steps in soil survey procedures:

- 1.- Area reconnaissance
- 2.- Soil, geology, climate...data gathering, compilation
- 3.- Photointerpretation (PI), pre- delineation
- 4.- Soil description in the field (field survey, FS)
- 5.- Soil analysis (SA)
- 6.- Mapping units delineation (FS + PI)
- 7.- Final rapport and map

3.- Soil survey procedure and soil analysis

3.- Soil survey procedure and soil analysis

Analytical data are essential for soil classification procedures

3.- ...the soil report and the soil map

A3g, Complex FONGUERA-ABELLER; arenosa 15-30% de pendent, no pedregosa, poc gravenca

Soil mapping unit

Soil serie

Analytical data

Hori	tzó I	Profunditat		рН		Matèria orgànica (%)		Carbonat càlcid equivalent (%)	CE (dS/m a 25 °C 1:5
0		-1							
Α	ı	0-10/22		7,0		1,7		0	0,1
B _w	/R	>10/22		8,1		1,1		0	
			Textura USDA						
Horitzó	Profunditat	ArG (%)	ArF (%)	Ar _{total} (%)	LG (%)	LF (%)	(%)	a (%)	Textura (USDA)
0	-1								
Α	0-10/22	75	16	91	2	2	4	5	Arenosa
B _w /R	>10/22	69	19	88	2	3	5	7	Arenofranca
						Cati	ons de c	anvi	
Horitz	ó Prof	Profunditat		Ca 2+ cmol _c Kg ⁻¹		-1 C	Mg ²⁺ cmol _c Kg	Na+ cmol _o Kg	CIC I ⁻¹ cmol _a Kg∹
0		-1							
Α	0-1	0-10/22		2,2			0,2	0,1	4,3
B _w /F	R >1	0/22							
							Fertili	tat	
Hori	tzo i	Profunditat		N-NO ₃ mg Kg ⁻¹		Nkj (%)		P mg Kg-1	K mg Kg-1
0	1	-1							
Α		0-10/22		1		0,04		2	24
B _w	/D	>10/22							

- Soil recognition
- Soil horizon definition
- Soil classification
- Soil mapping delineation
- Soil data base
- Soil evolution/ monitoring

 Soil Mapping for "static" or "dinamic" output products

eurofins

Some examples:

Soil recognition. eg ...How much carbonates?

Soil horizon definition.- eg...Which % of organic carbon?

• Soil classification.- eg...% how much clay in two consecutive horizons

Soil mapping delineation.- eg...specific soil sample chemical properties for supporting map unit delineation

Soil data base.- eg... heavy metal geological background

Soil evolution/monitoring eg...soil nutrient evolution (P, Zn...), OC

Reliability:

- Strong points of soil data originated in an expert soil laboratory
 - Use of specific methodologies (recognized methodology of soil analysis)
 - Internal quality control
 - Intercomparaison studies
 - Accreditation of specific procedures
 - Systematic in soil analysis procedure
 - Specialized personnel

The need of precise data

From the soil sample to the soil analytical sheet

eurofins

Challenges:

- Speed or turn around time (soil sampling- soil analytical data)
- Cost of the analytical process in relation to the overall cost in Soil Mapping Projects
- A better interaction between Soil Map producers and Soil Analyst concerning soil data characteristics
- The introduction of new analytical data in the standard soil analysis procedure. E.g.: NIR data in soil laboratory samples
- The change of analytical methodologies when new methods could allow for a better soil data information

5.- Soil analysis mostly used in soil mapping

About analytical methods:

- Some notes about analytical methods
 - "Most of them" are internationally applied. "Most of them" remain local or regional.
 - Soil analysis methodologies are difficult to change
 - Some analytical methods are country-adapted; they have a tradition for specificity soil local characteristics
 - International methods are submitted to intercomparison exercises and they allow a better transfer of data between soil specialist teams

4.- Most frequently requested analytical data

SOIL ANALYTICAL PARAMETER	OBSERVATION				
рН	Certain variability in the method if not strictly applied				
Clockwicel conductivity	Essential for soil salinity evaluation				
Electrical conductivity	Additional analysis pHe, CEe, anions and cations for salinity diagnostic				
Organic carbon	Two main methods of work				
Calcium carbonate equivalent	Two main methods of work				
soil granulometry	Different methods (Robinson, Bouyoucos), different limits between fractions				
Cation exchange capacity	Different methods with several limitations				
Soil water availability	Difficult soil analysis test				
Soil nutrients	amonium acetate predominant for cations. P different extractants				
Soil micronutrients	Dominant methods				
Heavy metal	Different methods				
Saliniyty parameters	Extract of saturated paste				

6.- New methods of soil data generation eurofins

1.- NIR Analysis (in lab. with treated soil sample

2.- Multi- extracting methods. Objectives:

- To optimize the analytical work
- To reduce time, cost

Problem: results interpretation

6.- New methods of soil data generation eurofins

Remote or proximal spectral sensing data (without soil sampling)
Constraints:

- They mostly concern with vegetation spectral response
- Concerning soil they concern with soil surface reflectance
- Validation, robustness of the method

7.- Additional notes and conclusions

- Soil survey and soil mapping rely in objective, precise, soil analytical data
- Basics components of soil map (i.e. mapping units and soil description) are based upon reliable soil analytical data
- International, well known analytical methods are the reference. However "local" methods and historical data imply the use of local methods which are often oriented to local conditions

7.- Additional notes and conclusions

- NIR methods could accelerate the soil analytical data production. They could amplify the number of samples to be analyzed in routine surveys
- Remote or proximal sensing methods obtaining spectral responses directly from the field are being incorporated to soil mapping. They are less related with soil analysis
- Soil surveyors and soil analyst should cooperate strongly in order to optimize the soil data generation and usefulness

From the soil observation to the soil analytical data

Field data

Soil analysis for soil mapping

23

"Soil analysis: a tool for learning" (Blackmer, 2003)

Miquel Aran Eurofins Agroambiental miquelaran@eurofins.com

EUROFINS Agroambiental
PARTIDA SETSAMBS s/n
E-25222 Sidamon (Lleida, Spain)