3D Geological modeling of the coastal area in Emilia-Romagna, Italy

Lorenzo Calabrese (1); Luisa Perini (1), Samantha Lorito (1), Paolo Luciani (1), Alberto Martini (1), Paolo Severi (1), Annamaria Correggiari (2) and Alessandro Remia (2)

(1) SGSS, Regione Emilia-Romagna. lcalabrese@regione.emilia-romagna.it (2) ISMAR CNR, Bologna. anna.correggiari@bo.ismar.cnr.it

The coast of Emilia-Romagna

Features

- 130 km of flat sandy coast
- Alluvial to deltaic/littoral depositional systems
- Thick Holocene trasgressiveregressive sedimentary sequence

Land Use

- Widespread urban area
- Natural environments as dunes, wetlands and lagoons

Problematic aspects

- Coastal erosion
- Sea-flood
- Subsidence
- Salinization of acquifer
- Liquefaction and settlements

Why a 3D modelling?

 To represent the great amount of available territorial information

 To increase the understanding of a complex reality like the geological one

 To provide new tools for specific studies such as hydrogeological, geotechnical, risk analysis etc.

Available data

A huge amount of data has been stored in the SGSS-RER Information Systems:

- Geological and thematic maps, geological crosssections
- Seismic profiles
- High resolution digital terrain models
- Geognostic Data Base

"and a long-standing experience in the study of the geology of this area

Geological Maps

Geological Map of Emilia-Romagna Alluvial Plain 1:250,000 (1999)

Geological Maps of national project CARG 1:50000 (1997-present)

Cross-sections

Geological cross-section trace in the coastal area

detailed "surficial" section (up to 40 m depth)

Seismic profiles

Digital Terrain Models

Resolution up to 1x1 m Surveys from 2004 to 2012

+20 m

-20 m

Geognostic Data Base

A dense distribution of georeferenced geognostic data provides important information on lithology and physical characteristics of the sedimentary sequence, from a few meters up to hundreds of meters

- Corings
- Water Wells
- Piezocone Penetration Tests (CPTU)

Geognostic Data Base

Corings and facies analysis

CPTU and numeric elaboration

Samples and laboratory analysis

The 3D software

We chose a product with specific functionality, able to respond to our needs. Basic points to our purposes are:

- use and integrate all available data;
- campatibility with our structurated data base;
- compatibility with GIS technology and dataset;
- relevant to reproduce the stratigraphy of the Po Valley;
- ability to check and correct the work manually according to the real experience of geologists;
- versatility in many application fields.

Application fields

Statigraphic analysis of sedimentary successions (regional scale)

Mapping of stratigraphic surfaces (Top of Pliocene – eastern Po Plain and Appennine margin)

Area: 10000 Kmq Max depth: 2500 m

Stratigraphy of the Quaternary succession (eastern Po Plain and Appennine margin)

Area: 25000 Kmq

Max thickness: 3500 m

Application fields

Reconstruction of complex architectures (local scale)

Detailed geometries of aquifers and aquitards (Marecchia alluvial fan – Rimini)

Area: 4.6 Kmg

Max thickness: 150 m

Definition of shape and volume of southern Po delta lobes (Po di Volano and Po di Goro – Ferrara)

> Area: 1000 Kmq Thickness: 40 m

Application fields

Variations of parametric values within geological bodies

Cone penetration resistance (Qc) trend from CPTU within the prodelta wedge (Lido di Classe – Ravenna)

Area: 120 Kmq

Max thickness: 16 m

Variation of the electrical conductivity (EC) within the groundwater of the coastal phreatic aquifer (Lido di Classe - Ravenna)

Area: 120 Kmq

Max thickness: 15 m

Case study

3D model of the Holocene succession in the Southern Po Delta

OVERVIEW

- This sector is characterized by a thick (up to 35 m) Holocene T-R sequence with continental to marine then to deltaic deposits.
- The upper part of the sequence records the progradation of the Po di Volano and Po di Goro delta lobes.
- Po di Volano was active from the Roman period to the XVI century; Po di Goro has grown since the XVII century to the present.

Available data

Model creation 1

Stratigraphic correlations

Model creation 2

Stratigraphic surfaces

Model creation 3

Statigraphic Scheme

- Surface chronology
- Nature of the conctact (depositional or erosional)

Geological unit:

- Lithology
- Depositional environments
- Chronology
-

Geological volume model

movie 1: 3D Geological Model of Po di Volano Delta

Use of the 3D Geological Model

Thematic 3D Cartography

Geotechnical (CPTU data)

- Soil Behavior Type (SBT)
- Yield Stress Ratio (YSR)
- Factor of Safety against liquefaction (FS)

Hydrogeology

Piezometric data of Coastal Phreatic Aquifer

Coastal Dynamics

Geometry and depositional evolution of delta lobes

Soil Behavior Type (SBT) from piezocone pentration test (CPTU)

Geological model

CPTU => SBT (Robertson 2009)

SBT values were interpolated inside each of the volumes. The lithological variations within geological units, as example in the «dune/sandbar» unit (orange), can be appreciated.

Yield Stress Ratio (YSR) from piezocone pentration test (CPTU)

Geological model

CPTU => YSR (Mayne 2014)

YSR represents the level of consolidation and it is interpolated within fine-grained units as "prodelta" and "backbarrier/deltaic and alluvial plain" units.
Values below "1" (blue) can indicate underconsolidated deposits, prone to settlements

Factor of Safety against Liquefaction due to earthquekes (FSL) from CPTU

FSL is calculated (Robertson 2009) within the «dune/sandbar» unit; model shows volumes with values below «1» (red) prone to liquefaction

Salinity and temperature of groundwater

Recent delta lobes and littoral sand model

The model reproduces the sea-floor morphologies, thickness and geometric relationships of the units, by integrating detailed digital bathimetric models, a rich set of seismic profiles and corings.

movie 2: Examples of application of 3D model

Concluding remarks

We found significant advantages by employing 3D modeling:

- all geological and territorial data available can be integrated; models can be easily updated and implemented with new data
- models are realistic representations of the subsurface and support new evaluations for geologists
- derived thematic mapping yielded good results, opening up new possibilities for interesting future developments

http://ambiente.regione.emilia-romagna.it/geologia

Leapfrog software by ARANZ Geo (New Zealand); main characteristics:

Implicit modeling:

model is generated by computer algorithms directly from a combination of measured data and <u>user interpretation</u> (conceptual model). It is dynamic and it produces automatically surfaces from geological data. Advantages: faster, more flexible and better suited to making geological models

Fast calculation:

FastRBF (Radial Basis Functions) algorithm is leapfrog engine; it is an implementation of dual kriging, it deals with over 1 million of data points, quickly in ordinary computer

Notes

Soil Behavior Type is a classification based on CPT data that describe the mechanical characteristic/behavior of penetrated soil, correlating them to the main lithologies.

Robertson 2009 classification range from 2 to 6 for clay to sand, 1 stand for sensitive fine grained soil and gravelly or stiff deposits are 8 and 9

YSR= S'y(effective yield stress)/S'v0 (effective vertical stress)

FSL=CRR(cyclic resistance ratio of deposit)/CSR(cyclic stress ratio due to seismic shaking)