3D geological modelling in Canada

Challenges and opportunities for academic research

Martin Ross, Michel Parent, Amanda Taylor, Aaron Bustard, and Tyler Hodder

Geological 3-D Modelling in Canada

- Bedrock Geology
 - Economic Geology
 - Structural geology, ore deposits
 - Sedimentary Basins
 - Hydrocarbons, uranium, geothermal energy
 - Nuclear waste repository studies
- Surficial sediments (Quaternary)
 - Groundwater resources (extraction, protection, remediation)
 - Land use management (e.g. planning growth)
 - Seismic hazards (e.g. ground shaking amplification)

Many opportunities exist for government-academic or industry-academic collaboration to investigate and address 3D geology related issues in Canada

Government mapping programs, R&D programs, partnership programs (funding)

- -pop. 2.8M
- -Seismic risk
- -Thick clay deposits (ground motion amplification)
- -microzonation studies

QUEBEC

Pop. 8M

Largest City: Montreal (metro pop. 4.3M)

- Mining and exploration activity (mid-north)
- Agriculture (St. Lawrence valley)
- Shale gas resources (St. Lawrence valley)
- Groundwater needs
- Seismic risk (St. Lawrence valley)
 - •Seismic zone and thick clay deposits

Models for various applications

Recent hydrogeology studies with 3D mapping components

Quebec Provincial government and university collaboration 7 universities

- Several research groups focusing on hydrogeology and/or Quaternary mapping
 - Geological maps, aquifer maps, recharge, vulnerability, GW flow models

Couverture territoriale du

Study areas: most are between 4000 to 12 000 km²

Population: 42,000 to 700,000

- groundwater resources (quantity and quality)
 - natural contamination (As, Ba, Rn)
- Agriculture (nitrate contamination)
- Shale gas development
- Urban growth
- Geothermal energy
- Mining and exploration activity

Towards seamless 3D geological models of populated regions

Atlantic Canada:

Pop.: 2.4M

Largest City: Halifax (pop. 0.4M)

- Agriculture
- Mining and exploration
- Offshore hydrocarbon resources
- Groundwater needs
- Few targeted 3d mapping

British Columbia:

Pop: 4.6M

Largest City: Vancouver (Metro pop. 2.3M)

- Mining and exploration
- Agriculture (Fraser and Okanagan valleys)
- Natural hazards (e.g. seismic, landslides)
- Few targeted 3d mapping (e.g. Vancouver Island)

Northern Canada:

Pop: about 0.1M

0.03 inhabitants per square km

- Natural resources
 - Mining and exploration
 - Hydrocarbon (offshore)
- 3D modelling is very focused
 - Ore deposits and mines
 - e.g. diamond mines (Yellowknife)
 - Recent 3D Quaternary mapping
 - Prospective areas
 - Local permafrost studies

Subcropping deposits (thick till)

B) Cross-section soil selective vegetation leach & soil gas geochemical anomaly Heavy mineral & anomaly Kimberlite clasts till geochemical anomaly Million of Stores of Street till host rock hydrogeochemical - kimberlite

FIGURE 4. Schematic plan and cross-section views of clastic dispersal and chemical dispersion patterns in various media around a kimberlite in glaciated terrain.

Simple conceptual models:

- -One dispersal direction
- -Subcropping mineralization available to glacial erosion
- -Relatively flat bedrock
- -Simple stratigraphy (one unit)

Deeper targets...

More complex situation...

- -Only alteration haloe may have been eroded and transported
- -Multiple Quaternary units (complex 3D dispersal patterns)
- -Heavily drumlined terrain
- -Multiple ice flow directions (dispersal directions)

Case example...

3D dispersal patterns

Partnerships in 3D geomodelling

- Increasing needs and more complex problems
 - Need R&D along with 3D geomodelling
- Need training next generation of geoscientists in 3D geomodelling
- Solution? Government- or industry-academic partnerships
 - Govt. and university research teams involved in developing the models and their application to various problems
 - Spur innovation
 - Graduate students embedded in collaborative research groups

Issues?

- A mosaic of models and databases (difficult to integrate, maintain, and update with evolving online technologies for data dissemination, visualization, etc.)
 - Publication media still not well adapted for 3D digital products
- Few 3D mapping standards
- Most geological surveys still largely involved in traditional 2D mapping
 - Limited resources for 3D mapping programs
- Urban geology remains a major challenge...

Acknowledgments

Ressources naturelles Canada

